DEPARTMENT OF PRE-UNIVERSITY EDUCATION
 MODEL QUESTION PAPER FOR ANNUAL EXAMINATION APRIL-2022

II PUC

SUB: MATHEMATICS (35)

TIME: 3 Hours 15 MinutesMAX. MARKS: 100

Instructions :

(i) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
(ii) Use the graph sheet for the question on Linear programming in PART E.

PART - A

Answer any TEN questions 10 X1=10

1. Give an example of a relation which is symmetric and transitive but not reflexive.
2. Define a binary operation.
3. Find the principal value of $\cos ^{-1}\left(\frac{-1}{2}\right)$.
4. If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$, then find the value of x.
5. Define a row matrix.
6. Find the value of x if $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$.
7. If $y=e^{\cos x}$, find $\frac{d y}{d x}$.
8.If $y=\sin \left(x^{2}+5\right)$, find $\frac{d y}{d x}$.
9.Find $\int\left(2 x^{2}+e^{x}\right) d x$.
10.Evaluate $\int_{2}^{3} \frac{1}{x} d x$.
8. Find the unit vector in the direction of vector $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$.
9. Write two different vectors having same magnitude.
13.Write the direction cosines of x -axis.
14.Define feasible region of a linear programming problem.
10. Find $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$, if $\mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.32$.

PART- B

Answer any TEN questions 10 X2=20

16. Show that the signum function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=\left\{\begin{array}{ccc}1 & \text { if } & x>0 \\ 0 & \text { if } & x=0 \\ -1 & \text { if } & x<0\end{array}\right.$ is neither one-one nor onto.
17. Find the value of $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$.
18. Write the domain and range of $y=\tan ^{-1} x$.
19. Find the values of x, y and z from the equation $\left[\begin{array}{ll}4 & 3 \\ x & 5\end{array}\right]=\left[\begin{array}{ll}y & z \\ 1 & 5\end{array}\right]$.
20. Find equation of line joining $(1,2)$ and $(3,6)$ using determinants.
21. If $x^{2}+x y+y^{2}=100$, find $\frac{d y}{d x}$.
22. If $x=a t^{2}, y=2 a t$, find $\frac{d y}{d x}$.
23. Differentiate $\sin \left(\cos \left(x^{2}\right)\right)$ with respect to x .
24. Find the slope of tangent to curve $y=x^{3}-x+1$ at the point whose x -co-ordinate is 2 .
25.Find $\int \frac{(\log x)^{2}}{x} \mathrm{dx}$.
26.Find $\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} \mathrm{dx}$.
27.Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$.
28.Find the order and degree of the differential equation $y^{1}+y=e^{x}$.
29.Find the projection of the vector $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}$ on the vector $\vec{b}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$.
30.Find the area of the parallelogram whose adjacent sides are given by the vectors
$\vec{a}=\hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\vec{b}=2 \hat{\imath}-7 \hat{\jmath}+\hat{k}$.
25. Find the intercepts cut-off by the plane $2 x+y-z=5$.
32.Find the distance of the point $(-6,0,0)$ from the plane $2 x-3 y+6 z-2=0$
33.The random variable X has a probability distribution $\mathrm{P}(\mathrm{X})$ of the following form where k is some number. Find the value of k.
$\mathrm{P}(\mathrm{X})=\left\{\begin{array}{l}k, \text { if } x=0 \\ 2 k, \text { if } x=1 \\ 3 k, \text { if } x=2 \\ 0, \text { otherwise }\end{array}\right\}$

PART - C

Answer any TEN questions $10 \times 3=30$

34. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2$,
is reflexive but neither symmetric nor transitive.
35. Prove that $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$.
36. Find the inverse of the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$ using elementary operations.
37. Verify that the value of the determinant remains unchanged if its rows and columns are interchanged by considering third order determinant $\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$.
38. If $x y=e^{x-y}$ find $\frac{d y}{d x}$.
39. If $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ find $\frac{d y}{d x}$.
40.Verify mean value theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[\mathrm{a}, \mathrm{b}]$
where $\mathrm{a}=1$ and $\mathrm{b}=4$.
40. Find the intervals in which the function f given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is
(a) increasing
(b) decreasing.
42.Find $\int \frac{x e^{x}}{(1+x)^{2}} \mathrm{dx}$.
43.Evaluate $\int \frac{1}{(x+1)(x+2)} d x$.
44.Evaluate $\int_{0}^{2} e^{x} \mathrm{dx}$ as the limit of a sum.
41. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.
46.Form the deferential equation representing the family of curves $y=a \cdot \sin (x+b)$, where a, b are arbitrary constants.
47.Find the general solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.
42. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{o}$, find the value of
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
43. Find x such that the four points $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are co-planar. 50.Find the shortest distance between the lines $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$.
51.A man is known to speak truth 3 out of 4times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART -D

Answer any SIX questions

$6 \times 5=30$
52. Let $\mathrm{A}=\mathrm{R}-\{3\}$ and $\mathrm{B}=\mathrm{R}-\{1\}$. Consider the function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined $f(x)=\frac{x-2}{x-3}$.

Is f one-one and onto? Justify your answer.
53. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{R}$ be a function defined as $f(x)=4 x^{2}+12 x+15$.

Show that $f: N \rightarrow S$ where, S is the range of f is invertible. Find the inverse of f.
54. If $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right]$, then verify that
(i) $(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}$
(ii) $(\mathrm{A}-\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}-\mathrm{B}^{\mathrm{T}}$.
55. Solve system of linear equation, using matrix method.
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$
56.If $y=3 \cos (\log x)+4 \sin (\log x)$ Show that $x^{2} y_{2}+x y_{1}+y=0$.
57. The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $4 \mathrm{~cm} /$ minute. When $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$ find the rates of change of
a) the perimeter
b) the area of the rectangle.
58.Find the integral of $\frac{1}{x^{2}+a^{2}}$ with respect to x and hence evaluate $\int \frac{3 x^{2}}{x^{6}+1} d x$.
59. Find the area enclosed by the circle $x^{2}+y^{2}=a^{2}$ using integration.
60.Find the general solution of the differential equation $\mathrm{x} \frac{d y}{d x}+2 \mathrm{y}=\mathrm{x}^{2} \quad(\mathrm{x} \neq 0)$.
61.Derive the equation of a plane perpendicular to a given vector and passing through a given point both in vector and Cartesian form.
62.A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize
a) atleast once
b) exactly once
63.Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that
(i) the problem is solved
(ii) exactly one of them solves the problem

PART - E

Answer any ONE question1 X10=10

64. (a) Maximise $Z=3 x+2 y$ subject to the constraints $x+2 y \leq 10,3 x+y \leq 15, x, y \geq 0$
b) If the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{2}-4 A+I=O$, when I is 2×2 identify matrix and O is 2×2 zero matrix. Using this equation find A^{-1}.
65. (a)Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ and hence evaluate $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$.
(b) Find the value of K so that the function $f(x)=\left\{\begin{array}{l}K x+1 \text { if } x \leq 5 \\ 3 x-5 \text { if } x>5\end{array}\right.$
is continuous at $x=5$.
66. (a) Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.
b) By using properties of determinants

$$
\text { Show that }\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|=(a+b+c)^{3} \text {. }
$$

