DEPARTMENT OF PRE-UNIVERSITY EDUCATION

MODEL QUESTION PAPER FOR ANNUAL EXAMINATION APRIL-2022

II PUC

SUB: MATHEMATICS (35)

TIME: 3 Hours 15 MinutesMAX. MARKS: 100

Instructions :

- (i) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
- (ii) Use the graph sheet for the question on Linear programming in PART E.

PART – A

Answer any TEN questions 10 X1=10

- 1. Give an example of a relation which is symmetric and transitive but not reflexive.
- 2. Define a binary operation.
- 3. Find the principal value of $\cos^{-1}\left(\frac{-1}{2}\right)$.
- 4. If $\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$, then find the value of x.
- 5. Define a row matrix.
- 6. Find the value of x if $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$.
- 7. If $y = e^{\cos x}$, find $\frac{dy}{dx}$.
- 8. If $y = sin(x^2 + 5)$, find $\frac{dy}{dx}$.
- 9.Find $\int (2x^2 + e^x) dx$.
- 10.Evaluate $\int_{2}^{3} \frac{1}{x} dx$.

11. Find the unit vector in the direction of vector $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$.

12. Write two different vectors having same magnitude.

13.Write the direction cosines of x-axis.

14.Define feasible region of a linear programming problem.

15.Find P(A|B), if P(B) = 0.5 and $P(A \cap B) = 0.32$.

PART-B

Answer any TEN questions 10 X2=20

16. Show that the signum function f:R \rightarrow R given by $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$

is neither one-one nor onto.

17. Find the value of $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$.

- 18. Write the domain and range of $y = \tan^{-1} x$.
- 19. Find the values of x, y and z from the equation $\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}$.
- 20. Find equation of line joining (1, 2) and (3, 6) using determinants.

21. If
$$x^2 + xy + y^2 = 100$$
, find $\frac{dy}{dx}$.

22. If $x = at^2$, y = 2at, find $\frac{dy}{dx}$.

23. Differentiate $sin(cos(x^2))$ with respect to x.

24. Find the slope of tangent to curve $y = x^3 - x + 1$ at the point whose x-co-ordinate is 2. 25.Find $\int \frac{(logx)^2}{x} dx$.

26.Find $\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx.$

27.Evaluate $\int_0^{\frac{\pi}{2}} \cos^2 x \, dx$.

28. Find the order and degree of the differential equation $y^1 + y = e^x$.

29. Find the projection of the vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$.

30. Find the area of the parallelogram whose adjacent sides are given by the vectors

 $\vec{a} = \hat{\imath} - \hat{\jmath} + 3\hat{k}$ and $\vec{b} = 2\hat{\imath} - 7\hat{\jmath} + \hat{k}$.

31.Find the intercepts cut-off by the plane 2x+y-z=5.

32. Find the distance of the point (-6,0,0) from the plane 2x - 3y + 6z - 2 = 0

33. The random variable X has a probability distribution P(X) of the following form where k is some number. Find the value of k.

$$P(X) = \begin{cases} k, if x = 0\\ 2k, if x = 1\\ 3k, if x = 2\\ 0, otherwise \end{cases}$$

PART – C

Answer any TEN questions 10 X3=30

34. Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$

3)}

is reflexive but neither symmetric nor transitive.

35.Prove that
$$2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$$
.

36. Find the inverse of the matrix $A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$ using elementary operations.

37. Verify that the value of the determinant remains unchanged if its rows and columns are

interchanged by considering third order determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$.

38. If $xy = e^{x-y}$ find $\frac{dy}{dx}$.

39. If $x = a(\cos\theta + \theta \sin\theta)$, $y = a(\sin\theta - \theta \cos\theta)$ find $\frac{dy}{dx}$.

40. Verify mean value theorem, if $f(x) = x^2 - 4x - 3$ in the interval [a, b]

where a = 1 and b = 4.

41. Find the intervals in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is

(a) increasing (b) decreasing.

42.Find
$$\int \frac{xe^x}{(1+x)^2} dx$$
.

43.Evaluate $\int \frac{1}{(x+1)(x+2)} dx$.

44.Evaluate $\int_0^2 e^x dx$ as the limit of a sum.

45.Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis

in the first quadrant.

46. Form the deferential equation representing the family of curves y=a.sin(x+b), where

a, b are arbitrary constants.

47. Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.

48. If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{o}$, find the value of

$$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$$
.

49. Find x such that the four points A(3,2,1), B(4,x,5), C (4,2, -2) and D(6,5, -1) are co-planar. 50. Find the shortest distance between the lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$.

51.A man is known to speak truth 3 out of 4times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

PART –D

Answer any SIX questions

6X5=30

52. Let A = R - {3} and B = R-{1}. Consider the function f: A \rightarrow B defined $f(x) = \frac{x-2}{x-3}$.

Is f one-one and onto? Justify your answer.

53.Let f: N \rightarrow R be a function defined as $f(x) = 4x^2 + 12x + 15$.

Show that f: $N \rightarrow S$ where, S is the range of f is invertible. Find the inverse of f.

54. If
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{bmatrix}$, then verify that
(i) $(A+B)^{T} = A^{T} + B^{T}$ (ii) $(A-B)^{T} = A^{T} - B^{T}$.

55. Solve system of linear equation, using matrix method.

$$2x + 3y + 3z = 5$$

$$x - 2y + z = -4$$

$$3x - y - 2z = 3$$

56. If $y = 3\cos(\log x) + 4\sin(\log x)$ Show that $x^2y_2 + xy_1 + y = 0$

57. The length x of a rectangle is decreasing at the rate of 5cm/minute and the width y is increasing at the rate of 4cm/minute. When x = 8 cm and y = 6cm find the rates of change of

a) the perimeter

b) the area of the rectangle.

58. Find the integral of $\frac{1}{x^2 + a^2}$ with respect to x and hence evaluate $\int \frac{3x^2}{x^6 + 1} dx$.

59. Find the area enclosed by the circle $x^2 + y^2 = a^2$ using integration.

60. Find the general solution of the differential equation $x \frac{dy}{dx} + 2y = x^2$ (x \neq 0).

61.Derive the equation of a plane perpendicular to a given vector and passing through a given point both in vector and Cartesian form.

62.A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize

is $\frac{1}{100}$. What is the probability that he will win a prize

a) atleast once

b) exactly once

63. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively.

If both try to solve the problem independently, find the probability that

(i) the problem is solved (ii) exactly one of them solves the problem

PART – E

Answer any ONE question1 X10=10

64. (a) Maximise Z = 3x + 2y subject to the constraints $x + 2y \le 10$, $3x + y \le 15$, $x, y \ge 0$

b) If the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = 0$, when I is 2×2 identify matrix and O is 2×2 zero matrix. Using this equation find A^{-1} .

65. (a)Prove that
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$
 and hence evaluate $\int_0^a \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx$.

(b) Find the value of K so that the function $f(x) = \begin{cases} Kx + 1 & \text{if } x \le 5\\ 3x - 5 & \text{if } x > 5 \end{cases}$

is continuous at x = 5.

- 66. (a) Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.
 - b) By using properties of determinants

Show that $\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3.$
